1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8
высота АН⊥ВС явл. медианой ⇒ ВН=СН=3
По теореме о трёх перпендикулярах ДН⊥ВС ⇒
расстояние от точки Д до ВС = ДН.
ΔАВН: АН=√(25-9)=4
ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД
АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора)
АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2
по теореме о трёх перпенд. НО⊥АС ⇒
искомое расстояние от т. Н до т. О (до АС)= НО.
ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2
Середина АВ - точка Е, АЕ=ВЕ=2.
Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17