1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
Если из вершин тупых углов провести высоты, они отсекут на нижнем большем основании три отрезка, средний, равный верхнему основанию 4 см и два равных по 6см, /(16-4)/2=6/
Возьмем один из треугольников, который отсекает высота , содержащий высоту, боковую сторону и отрезок в 6см и найдем высоту. √(10²-6²)=8
Если найдем диагональ, то воспользуемся формулой для нахождения радиуса описанной окружности для треугольника, содержащего нижнее основание, диагональ и боковую сторону, это будет искомый радиус, т.к. если окружность описана около этого треугольника,то она автоматически описана и около трапеции.
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
ответ 1. 100; 2. -100; 3. 0
Если из вершин тупых углов провести высоты, они отсекут на нижнем большем основании три отрезка, средний, равный верхнему основанию 4 см и два равных по 6см, /(16-4)/2=6/
Возьмем один из треугольников, который отсекает высота , содержащий высоту, боковую сторону и отрезок в 6см и найдем высоту. √(10²-6²)=8
Если найдем диагональ, то воспользуемся формулой для нахождения радиуса описанной окружности для треугольника, содержащего нижнее основание, диагональ и боковую сторону, это будет искомый радиус, т.к. если окружность описана около этого треугольника,то она автоматически описана и около трапеции.
R=а*в*с/(4S)
Диагональ равна √(8²+10²)=√164=2√41/см/
а площадь треугольника равна 8*16/2=64/см²/
Радиус равен 16*10*2√41/(4*64)=1,25√41/см/