Решить по !
№1 угол dbc равен 148°, ск - биссектриса этого угла. найдите угол bck
№2 найдите угол adc, если угол bde равен 138°
№3 найдите длинны отрезков bd и dc, если вс = 24см, bd на 8см больше отрезка dc
№4 отрезки mp и ok пересекаются в точке е, один из углов при вершине е равен 110°. найдите угол кес, где ес - биссектриса угла рек
напишите подробное решение, без "дано".
Это легко сосчитать.
Первая монета может упасть двумя орел или решка), и на каждый их них вторая может упасть тоже двумя Всего для двух монет получается 4 события (можно и перечислить - "орел, орел", "орел, решка", "решка, орел", "решка, решка").
Теперь понятно, что на каждое такое событие ТРЕТЬЯ монета может упасть опять-таки двумя Откуда и получается 8 разных вариантов выпадения трех монет.
А подходящим является только 1 событие - все три монеты упали кверху решкой.
Поэтому классическая вероятность такого события равна 1/8.
Интересно вот что. Этот ответ правильный, если монеты РАЗЛИЧНЫ или бросаются ПОСЛЕДОВАТЕЛЬНО. Если все три монеты абсолютно неразличимы и бросаются одновременно, вероятность может оказаться другой :). В самом деле, в этом случае есть следующие возможные события - "3 орла" "2 орла, 1 решка" "2 решки, 1 орел", "3 решки". Однако эти события неравноправны. Так что ...:)
Квадрат отличается от произвольного прямоугольника тем, что симметричен относительно диагоналей. То есть он переходит в себя при зеркальном отражении относительно прямой, проходящей через противоположные вершины.
Легко увидеть, что:
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон ИСХОДНОГО прямоугольника.
Поскольку ИСХОДНЫЙ прямоугольник переходит в себя при отражении относительно этих прямых, то и ПОЛУЧЕННЫЙ при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
То есть это квадрат.
Я напоминаю, что совпадение фигур при смещении, повороте или зеркальном отражении - это ОПРЕДЕЛЕНИЕ равенства. Самое первичное. Так сказать, наиглавнейшее. Поэтому это доказательство опирается только на определение равенства фигур и на свойства параллельных и секущей.