Сумма углов четырехугольника =360°
В четырехугольнике ОКЕС углы ЕКО=ЕСО=90° ( свойство радиуса, проведенного в точку касания)
Угол КЕС=360°-2•90°-120°=60°
По свойству отрезков касательных из одной точки КЕ=СЕ.
∆ КЕС - равнобедренный, его углы при КС равны (180°-60°):2=60° -
∆ КЕС равносторонний.
∆ КОС - равнобедренный ( стороны - радиусы).
Углы при КС=90°- 60°=30°
КЕ=СЕ, КО=СО, ЕО - общая. ∆ ЕКО=∆ ЕСО.
ЕО - биссектриса угла КЕС.
Угол ОЕС =30°
∆ ОЕС - прямоугольный.
Радиус ОС ( катет) противолежит углу 30°. ⇒
ОЕ=2•OC=12 см (свойство угла 30°).
КА=СА, ЕА медиана и высота ∆ КЕС,⇒ ЕО ⊥ АС.
В прямоугольном Δ АОС угол ОСА=30°⇒
ОА=ОС•sin30°=6•0,5=3 см
Сумма углов четырехугольника =360°
В четырехугольнике ОКЕС углы ЕКО=ЕСО=90° ( свойство радиуса, проведенного в точку касания)
Угол КЕС=360°-2•90°-120°=60°
По свойству отрезков касательных из одной точки КЕ=СЕ.
∆ КЕС - равнобедренный, его углы при КС равны (180°-60°):2=60° -
∆ КЕС равносторонний.
∆ КОС - равнобедренный ( стороны - радиусы).
Углы при КС=90°- 60°=30°
КЕ=СЕ, КО=СО, ЕО - общая. ∆ ЕКО=∆ ЕСО.
ЕО - биссектриса угла КЕС.
Угол ОЕС =30°
∆ ОЕС - прямоугольный.
Радиус ОС ( катет) противолежит углу 30°. ⇒
ОЕ=2•OC=12 см (свойство угла 30°).
КА=СА, ЕА медиана и высота ∆ КЕС,⇒ ЕО ⊥ АС.
В прямоугольном Δ АОС угол ОСА=30°⇒
ОА=ОС•sin30°=6•0,5=3 см
ΔCBD остроугольный и равнобедренный ;
СB = CD ;
BB₁ ┴ CD ;
DD₁ ┴ CB ;
∠BPD =126°( P - точка пересечения высот BB₁ и DD₁).
∠С -? , ∠B =∠D -? * * * иначе ∠СBD = ∠СDB - ? * * *
∠С +∠B +∠D =180 ;
ΔCBD равнобедренный ,поэтому
∠B = ∠D (как углы при основании равнобедренного треугольника)
∠B = ∠D =(180°-∠С)/2 =90° - ∠С /2 .
Т.к. треугольника CBD остроугольный ,то точка P ( ортоцентр ) пересечения высот BB₁ и DD₁ находится внутри него .
В четырехугольнике PB₁СD₁ :
∠С + ∠B₁PD₁ + ∠ PB₁С +∠ PD₁С =360°⇔∠С +∠B₁PD₁+90°+ 90°=360°⇔ ∠С +∠B₁PD₁= 180° , но ∠B₁PD₁ =∠BPD как вертикальные углы , следовательно :
∠С+∠BPD =180° ⇔ ∠С =180° - 126° =54°.
С другой стороны
∠С +∠B +∠D =180° ⇔ ∠B=∠D =90° - ∠С/2 = 90° -54°/2 =90°-27° =63°.
* * * ∠B +∠D =∠BPD * * *
ответ : 54°, 63°, 63°.