Точка К не лежит в плоскости трапеции АВСD с основаниями АВ и CD. .Через середины отрезков КА и КВ проведена прямая FE
1) Определите вид четырехугольника DCEF, если АВ:DC=2:1.
2) Вычислите периметр четырехугольника DCEF, если АВ=12 см, ЕС=8 см.
* * *
1) В ∆ АВК отрезок FE соединяет середины сторон AК и BК => FE- средняя линия треугольника и по свойству таковой EF║АВ. Если одна из двух параллельных прямых параллельна третьей прямой, то и вторая прямая также параллельна третьей прямой. . => CD||FE.
По условию СD=1/2 AB, средняя линия FE=1/2 АВ => FE=CD, обе лежат на параллеьных прямых ( основаниях трапеции, параллельных по определению).
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм. Противоположные стороны параллелограмма равны. ВА=СЕ=8 см
2) Если АВ=12 см, CD=FE=12:2=6 см, Р(ABCD)=2•(6+8)=28 см
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Точка К не лежит в плоскости трапеции АВСD с основаниями АВ и CD. .Через середины отрезков КА и КВ проведена прямая FE
1) Определите вид четырехугольника DCEF, если АВ:DC=2:1.
2) Вычислите периметр четырехугольника DCEF, если АВ=12 см, ЕС=8 см.
* * *
1) В ∆ АВК отрезок FE соединяет середины сторон AК и BК => FE- средняя линия треугольника и по свойству таковой EF║АВ. Если одна из двух параллельных прямых параллельна третьей прямой, то и вторая прямая также параллельна третьей прямой. . => CD||FE.
По условию СD=1/2 AB, средняя линия FE=1/2 АВ => FE=CD, обе лежат на параллеьных прямых ( основаниях трапеции, параллельных по определению).
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм. Противоположные стороны параллелограмма равны. ВА=СЕ=8 см
2) Если АВ=12 см, CD=FE=12:2=6 см, Р(ABCD)=2•(6+8)=28 см
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².