<BAD=90, а <ADB=45 по условию, значит <ABD=180-90-45=45, а значит △ABD - прямоугольный равнобедренный. Значит AB=AD=10.
Также по условию <BAC=<ADB=45, значит <CAD=<CAB=45. Рассмотрим тр-ки △ABC и △ADC. У них AC - общая, AB=AD, <CAD=<CAB, значит они равны по 1му признаку. =>BC=DC=x, <ACB=<ACD=30, значит △CBD - равнобедренный, а его <BCD=60. Но тогда 2 оставшихся угла тоже равны 60, а △CBD на самом деле равносторонний, и BC=DC=BD.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
10√2
Объяснение:
<BAD=90, а <ADB=45 по условию, значит <ABD=180-90-45=45, а значит △ABD - прямоугольный равнобедренный. Значит AB=AD=10.
Также по условию <BAC=<ADB=45, значит <CAD=<CAB=45. Рассмотрим тр-ки △ABC и △ADC. У них AC - общая, AB=AD, <CAD=<CAB, значит они равны по 1му признаку. =>BC=DC=x, <ACB=<ACD=30, значит △CBD - равнобедренный, а его <BCD=60. Но тогда 2 оставшихся угла тоже равны 60, а △CBD на самом деле равносторонний, и BC=DC=BD.
Найдём в △ABD гипотенузу BD:
BD²=AD²+AB²=10²+10²=200
x=BD=10√2
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).