Рассмотрим треугольник ASC. Он равнобедренный, и угол SAC = углу SCA = 72° Значит, угол МАС = 36°
Рассмотрим теперь треугольник CAM. Сумма его углов 180°, значит, угол АМС = 72°. Следовательно, треугольник CAM равнобедренный, и поэтому AC=AM. Аналогично находим, что BM=BC.
Таким образом, треугольник AMB равносторонний, и его сторона AB одновременно является стороной основания. По условию составим уравнение AB^2 (корень из 3) / 4 = 5 корень из 3откуда AB = корень из 20.
Диаметр описанной около правильного треугольника окружности равен 2/3 от биссектрис этого треугольника.
Так как треугольник правильный, то биссектриса является и медианой, и высотой. Предположим, что нам дан треугольник ABC. BH и AE - высоты к AC и BC соответственно. BH и BE пересекаются в точке O.
Медианы делятся в отношении 2:1. То есть BO : OH = 2 : 1. При этом BO - искомый радиус.
Так как BH - медиана, то AH = 1/2 AC = 3√3 см BH - высота ⇒ треугольник AHB - прямоугольный. По теореме Пифагора найдём BH: BH² = AB² - AH² BH² = 36*3 - 9*3 = 9(12 - 3) = 9 * 9 = 81 BH = 9 см
Нужное сечение — треугольник AMB.
Рассмотрим треугольник ASC. Он равнобедренный, и угол SAC = углу SCA = 72° Значит, угол МАС = 36°
Рассмотрим теперь треугольник CAM. Сумма его углов 180°, значит, угол АМС = 72°. Следовательно, треугольник CAM равнобедренный, и поэтому AC=AM. Аналогично находим, что BM=BC.
Таким образом, треугольник AMB равносторонний, и его сторона AB одновременно является стороной основания. По условию составим уравнение AB^2 (корень из 3) / 4 = 5 корень из 3откуда AB = корень из 20.
Так как треугольник правильный, то биссектриса является и медианой, и высотой.
Предположим, что нам дан треугольник ABC. BH и AE - высоты к AC и BC соответственно. BH и BE пересекаются в точке O.
Медианы делятся в отношении 2:1. То есть BO : OH = 2 : 1. При этом BO - искомый радиус.
Так как BH - медиана, то AH = 1/2 AC = 3√3 см
BH - высота ⇒ треугольник AHB - прямоугольный. По теореме Пифагора найдём BH:
BH² = AB² - AH²
BH² = 36*3 - 9*3 = 9(12 - 3) = 9 * 9 = 81
BH = 9 см
BO = 2/3BH = 2/3 * 9 = 6 см
ответ: радиус равен 6 см.