Сказка о четырехугольниках Как известно, Арифметика – царица всей математики, очень постарела и почти отжила свой век. К этому времени подросла ее внучка – красивая, величественная Геометрия. Чтобы взойти на трон, нужен ей был сильный и богатый Наслышана была Геометрия об интересных свойствах четырехугольников. Пригласила Геометрия четырехугольников к себе в царство математики испытать счастье. Но путь был долгий, трудный. Вместе с параллелограммом, ромбом, прямоугольником и квадратом отправилась и старая упрямая равнобедренная трапеция. Сначала они должны были лететь самолетом. Но в самолет попали только те, у кого противоположные стороны были попарно параллельны и диагонали точек пересечения делятся пополам. (Какие четырехугольники отправились самолетом?) Трапеция не стала отчаиваться, она поехала поездом. Из-за плохой погоды самолет сделал вынужденную посадку, и здесь пришлось четырехугольникам пройти дополнительные испытания. Трудности преодолели четырехугольники, у которых диагонали взаимно перпендикулярны и являются биссектрисами углов, и четырехугольники, у которых диагонали равны. (Кто остался?) Во дворец пустили не всех. Было главное условие: диагонали должны быть равными. (Кто во дворец?) К этому моменту прибыла и трапеция. Ее тоже пустили, т.к. у равнобедренной трапеции диагонали равны. Геометрия приказала четырехугольникам перечислить все свои свойства. Трапеция сказала: «У меня диагонали равны и углы при основании равны». Прямоугольник сказал: «У меня диагонали равны и точкой пересечения делятся пополам. Противоположные стороны равны и все углы прямые». Квадрат нежно добавил: «А я обладаю всеми свойствами параллелограмма, ромба и прямоугольника одновременно». Геометрия была в восторге, что квадрат был богат на свойства и со своими прямыми углами так хорошо сидел на троне. И он был провозглашен царицы в царстве математики. Прямоугольник был назначен главным садовником, а трапеция стала самой главной на кухне. Параллелограмм и ромб – 2 брата – знают, что без них сказки бы и не было.
Перечислим эти свойства: 1) Область определения: х - любое действительное число. 2) Область изменения: интервал (0, π). 3) Функция y = arсctg x ни четная, ни нечетная. Для нее выполняется тождество arсctg (-x) = π - arсctg x. 4) Функция y = arcсtg x монотонно убывающая на R. ⎛ π⎞ 5) График пересекает ось Оу в точке ⎜ 0, ⎟ . К оси Ох при х → + ∞ он приближается асимптоти- ⎝ 2⎠ чески (ось Ох является для него горизонтальной асимптотой при х → + ∞ ). Прямая у = π также служит асимптотой графика (при х → - ∞). 6) arcсtg x > 0 при любых x. Нулей функции нет. ОПР. Арккотангенсом числа а называется такое число из интервала (0, π), котангенс которого ра- вен а. ⎛ 1 ⎞ Пример 1. Найти α = arсctg ⎜ − ⎟ . ⎝ 3⎠ Подробно данный пример можно сформулировать так: найти такой аргумент α, лежащий в преде- 1 лах от 0 до π, котангенс которого равен − . 3 1 Решение. Существует бесчисленное множество аргументов, котангенс которых равен − , на- 3 −π 5π −7π пример: , , и т.д. Но нас интересует только тот аргумент, который находится в интерва- 6 6 6 5π ⎛ 1 ⎞ 5π ле (0, π). Таким аргументом будет . Итак, arctg ⎜ − ⎟ = . 6 ⎝ 3⎠ 6 Пример 2. Найти α = arcсtg 1. π Решение. Рассуждая так же, как и в предыдущем случае, получим arcctg 1 = . 4 Устные упражнения. ⎛ 3⎞ Найти: arcсtg ⎜ ⎟ , arcсtg (-1), arcсtg 3 . ⎝ 3⎠ Расположите в порядке возрастания: а) arcсtg 1,2, arcсtg р, arcсtg (-5); б) arcсtg (-7), arcсtg (-2,5), arcсtg 1,4. Примечание: исследование функции y = arcctg x и построение ее графика может быть задано на дом.
Сказка о четырехугольниках Как известно, Арифметика – царица всей математики, очень постарела и почти отжила свой век. К этому времени подросла ее внучка – красивая, величественная Геометрия. Чтобы взойти на трон, нужен ей был сильный и богатый Наслышана была Геометрия об интересных свойствах четырехугольников. Пригласила Геометрия четырехугольников к себе в царство математики испытать счастье. Но путь был долгий, трудный. Вместе с параллелограммом, ромбом, прямоугольником и квадратом отправилась и старая упрямая равнобедренная трапеция. Сначала они должны были лететь самолетом. Но в самолет попали только те, у кого противоположные стороны были попарно параллельны и диагонали точек пересечения делятся пополам. (Какие четырехугольники отправились самолетом?) Трапеция не стала отчаиваться, она поехала поездом. Из-за плохой погоды самолет сделал вынужденную посадку, и здесь пришлось четырехугольникам пройти дополнительные испытания. Трудности преодолели четырехугольники, у которых диагонали взаимно перпендикулярны и являются биссектрисами углов, и четырехугольники, у которых диагонали равны. (Кто остался?) Во дворец пустили не всех. Было главное условие: диагонали должны быть равными. (Кто во дворец?) К этому моменту прибыла и трапеция. Ее тоже пустили, т.к. у равнобедренной трапеции диагонали равны. Геометрия приказала четырехугольникам перечислить все свои свойства. Трапеция сказала: «У меня диагонали равны и углы при основании равны». Прямоугольник сказал: «У меня диагонали равны и точкой пересечения делятся пополам. Противоположные стороны равны и все углы прямые». Квадрат нежно добавил: «А я обладаю всеми свойствами параллелограмма, ромба и прямоугольника одновременно». Геометрия была в восторге, что квадрат был богат на свойства и со своими прямыми углами так хорошо сидел на троне. И он был провозглашен царицы в царстве математики. Прямоугольник был назначен главным садовником, а трапеция стала самой главной на кухне. Параллелограмм и ромб – 2 брата – знают, что без них сказки бы и не было.