Определение: углом между наклонной и плоскостью называется острый угол между наклонной и ее проекцией на эту плоскость.
Угол α между наклонной, опущенной из точки Т в плоскость ψ, верно обозначен на рисунках в) и д), так как на данных рисунках из точки Т опущен перпендикуляр к ОМ, лежащей в плоскости ψ, и из той же точки Т проведена наклонная, основание которой принадлежит ОМ.
Следовательно, ОМ является проекцией наклонной ТМ на плоскость ψ, а угол α - это угол между наклонной ТМ и её проекцией МО на плоскость ψ.
в) и д)
Объяснение:
Определение: углом между наклонной и плоскостью называется острый угол между наклонной и ее проекцией на эту плоскость.
Угол α между наклонной, опущенной из точки Т в плоскость ψ, верно обозначен на рисунках в) и д), так как на данных рисунках из точки Т опущен перпендикуляр к ОМ, лежащей в плоскости ψ, и из той же точки Т проведена наклонная, основание которой принадлежит ОМ.
Следовательно, ОМ является проекцией наклонной ТМ на плоскость ψ, а угол α - это угол между наклонной ТМ и её проекцией МО на плоскость ψ.
ответ: в) и д)
У задачи решения.
если АВ перпендикулярна плоскости)
В этом случае необходимо найти АМ:
АМ:МВ = 2:3, АВ = АМ + МВ
=> 2х + 3х = 12,5
5х = 12,5
х = 2,5
АМ = 2х = 2 * 2,5 = 5 (м)
если АВ является наклонной к плоскости)
Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).
Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.
Треугольники АВС и АDМ подобны по первому признаку.
=> AM/AB = MD/BC, АВ = АМ + ВМ
MD = (12,5 * 2) / 5 = 5 (м)
Объяснение: