Координаты центра О (3;5).а) На окружности есть две точки с абсциссой3. В уравнение окружности вместо х подставим 3, тогда получим (3-3)^2 + (у-5)^2=25. у^2-10у+25=25, у^2-10у=0, у( у-10)=0, первый корень у=0, второй корень у=10. тогда точки с абсциссой 3 имеют координаты М (3;0), N(3;10) б) На окружности есть 2 точки с ординатой 5 В уравнение окружности вместо у подставим 5 (х-3)^2+(5-5)^2=25 х^2-6х+9=25, х^2 -6х-16=0, D=9+16=25 , первый х=3+5=8, второй х=3-5=-2. Координаты точек с ординатой 5 : К ( 8;5), L (-2;5)
В уравнение окружности вместо х подставим 3, тогда получим
(3-3)^2 + (у-5)^2=25. у^2-10у+25=25, у^2-10у=0, у( у-10)=0, первый корень у=0, второй корень у=10. тогда точки с абсциссой 3 имеют координаты
М (3;0), N(3;10)
б) На окружности есть 2 точки с ординатой 5
В уравнение окружности вместо у подставим 5
(х-3)^2+(5-5)^2=25
х^2-6х+9=25, х^2 -6х-16=0, D=9+16=25 , первый х=3+5=8,
второй х=3-5=-2. Координаты точек с ординатой 5 : К ( 8;5), L (-2;5)
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.