решить задачи!Пример как надо решать есть.
Высота правильной четырехугольной пирамиды равна 3, а апофема 5. Найдите периметр основания этой пирамиды.
Боковая поверхность правильной пирамиды равна 24, а площадь основания равна 12. Под каким углом наклонены боковые грани к основанию?
В основании пирамиды лежит квадрат с диагональю, равной 5. Одно из боковых ребер перпендикулярно основанию. Большее боковое ребро наклонено к основанию в 45. Чему равен объём пирамиды?
Найдите площадь основания правильной треугольной пирамиды, у которой высота равна 8 , а двугранный угол при стороне основания равен 45.
В основании пирамиды треугольник со сторонами 7,10 и 13. Высота пирамиды 4. Найдите величину двугранного угла при основании пирамиды, если все боковые грани одинаково наклонены к плоскости основания.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.