Решить задачу. Прямая CD перпендикулярна плоскости правильного треугольника ABC. АВ=16 корней из 3. CD=16см. Найти расстояние от точки D до вершин треугольника
Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Дано:
Прям. тр. с острым углом в 60 градусов;
Сумма гипотенузы и катета = 42см.
Найти:
Гипотенуза.
Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
2х+х=42
х=42:3
х=14
ответ: 14.
Если катет = 14см, то гипотенуза = 14*2 = 28см.
ответ: 28см.
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2