Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.
Объяснение:
AD пересекает BC = K;
AK = KD;
BK = KC;
AB || CD.
AK = KD (по условию); |
BK = KC (по условию); |=> △AKB = △CKD (по I признаку).
∠АКВ = ∠CKD, они вертикальные |
Из этого следует, что накрест лежащие ∠KAB = ∠KDC => AB || CD.
△ABC - равнобедренный;
BD - биссектриса;
∠CKO = 110˚;
DM = DK;
O ∈ BD;
M ∈ AD;
K ∈ CD.
∠MOD = ?˚.
∠CKO + ∠OKD = 180˚, т.к. они смежные => ∠OKD = 180˚ - 110˚ = 70˚.
Биссектриса, проведённая к основанию равнобедренного треугольника, является и медианой и высотой.
=> ∠BDC = ∠BDA = 90˚ => △ODK и △ODM - прямоугольные.
Сумма острых углов в прямоугольном треугольнике равна 90°.
=> ∠DOK = 180˚ - (90˚ + 70˚) = 180˚ - 160˚ = 20˚.
MD = DK (по условию); OD - общий катет => △ODM = △ODK.
=> ∠DOK = ∠MOD = 20˚.
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.
Объяснение:
AD пересекает BC = K;
AK = KD;
BK = KC;
Доказать:AB || CD.
Доказательство:AK = KD (по условию); |
BK = KC (по условию); |=> △AKB = △CKD (по I признаку).
∠АКВ = ∠CKD, они вертикальные |
Из этого следует, что накрест лежащие ∠KAB = ∠KDC => AB || CD.
Что и требовалось доказать!Задание #2 (рисунок в файле):Дано:△ABC - равнобедренный;
BD - биссектриса;
∠CKO = 110˚;
DM = DK;
O ∈ BD;
M ∈ AD;
K ∈ CD.
Найти:∠MOD = ?˚.
Решение:∠CKO + ∠OKD = 180˚, т.к. они смежные => ∠OKD = 180˚ - 110˚ = 70˚.
Биссектриса, проведённая к основанию равнобедренного треугольника, является и медианой и высотой.
=> ∠BDC = ∠BDA = 90˚ => △ODK и △ODM - прямоугольные.
Сумма острых углов в прямоугольном треугольнике равна 90°.
=> ∠DOK = 180˚ - (90˚ + 70˚) = 180˚ - 160˚ = 20˚.
MD = DK (по условию); OD - общий катет => △ODM = △ODK.
=> ∠DOK = ∠MOD = 20˚.
ответ: ∠MOD = 20˚.