Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."
Решение.
Опустим перпендикуляр АН из точки А на плоскость альфа.
Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по Пифагору:
2х² = 6² => х = √6см.
Итак, ВН = СН = √6 см.
В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:
∠ВАС = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников ВАС и CDA, ⇒
ΔВАС = ΔCDA по двум сторонам и углу между ними,
значит ∠CAD = ∠BDA.
Тогда ΔAOD равнобедренный прямоугольный.
ΔВОС подобен ему по двум углам, значит тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей.
Для равнобедренных треугольников AOD и ВОС отрезки ОН и ОК - высоты и медианы, а в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине:
АВ = АС = 2√6 см, АН = 3√2 см.
Объяснение:
Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."
Решение.
Опустим перпендикуляр АН из точки А на плоскость альфа.
Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по Пифагору:
2х² = 6² => х = √6см.
Итак, ВН = СН = √6 см.
В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:
АН² = (2ВН)² - ВН² => АН = √(4·6 - 6) = 3√2 см.
ответ: АВ = АС = 2√6 см, АН = 3√2 см.
АВ = CD так трапеция равнобедренная,
∠ВАС = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников ВАС и CDA, ⇒
ΔВАС = ΔCDA по двум сторонам и углу между ними,
значит ∠CAD = ∠BDA.
Тогда ΔAOD равнобедренный прямоугольный.
ΔВОС подобен ему по двум углам, значит тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей.
Для равнобедренных треугольников AOD и ВОС отрезки ОН и ОК - высоты и медианы, а в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине:
КО = ВС/2
НО = AD/2, ⇒
KH = (AD + BC)/2 = 8 см,
тогда AD + BC = 16 см
Pabcd = 2AB + AD + BC = 24 + 16 = 40 см
Наверное так!)