Решите хоть что-нибудь Задание 4. Постройте сечение плоскостью, которая проходит через точки E, F, Q. Запишите план построения сечения. Картинка внизу (первая). Задание 5. В параллелепипеде ABCDA1B1C1D1 постройте его сечение плоскостью: а) ABC1; б) ACC1. Докажите, что построенные сечения являются параллелограммами. Задание 6: Сумма всех ребер параллелепипеда NMKLN1M1K1L1 равна 120 см. Определите длину ребер NM, MK и MM1, если NM : MK = 2 : 3, а MK : MM1 = 3 : 5. Картинка внизу (вторая).
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
В конусе можно провести три взаимно перпендикулярных образующих SA, SB и SC. SO - высота конуса. Пусть SA=SB=SC=1. Тогда АВ=ВС=АС=√2 как гипотенузы равнобедренных прямоугольных треугольников. Треугольник АВС (вписанный в основание конуса) равносторонний со стороной, равной √2 и в нем отрезок СО равен 2/3 от высоты этого треугольника, равной h=(√3/2)*a, где а - сторона треугольника: CO =(2/3)*(√3/2)*√2=√6/3. Осевое сечение конуса CDS, проходит через центр основания О. Тогда косинус угла в осевом сечении, прилежащего к основанию конуса, равен: Cos(<OCS)= CО/SC = (√6/3)/1 = √6/3. ответ: Cos(<OCS)=√6/3 ≈ 0,816.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.
SO - высота конуса.
Пусть SA=SB=SC=1. Тогда АВ=ВС=АС=√2 как гипотенузы равнобедренных прямоугольных треугольников.
Треугольник АВС (вписанный в основание конуса) равносторонний со
стороной, равной √2 и в нем отрезок СО равен 2/3 от высоты этого треугольника, равной h=(√3/2)*a, где а - сторона треугольника:
CO =(2/3)*(√3/2)*√2=√6/3.
Осевое сечение конуса CDS, проходит через центр основания О.
Тогда косинус угла в осевом сечении, прилежащего к основанию конуса, равен:
Cos(<OCS)= CО/SC = (√6/3)/1 = √6/3.
ответ: Cos(<OCS)=√6/3 ≈ 0,816.