1-рассмотрим треугольники абс и адс. т.к. ад равно аб и и угол дас равен углу бас (по усл) то ас- общая стоона следовательно треугольники равны по трем сторонам, а т.к. треугольники равно то их стороны будут равны. следовательно бсравно дс 2-т.к. ас и дс равны (как диагонали трапеции) следовательно это равнобедренная трапеция. у равнобедренной трапеции 2 стороны равны то следовательно да равно сб3- т.к. абсд это параллелограмм и ДА равно СБ по условию, то следовательно их диагонали будут равны. ас и бд и есть диагонали . следовательно они равны
ответ:не знаю как точно вы решаете но вот решение
Объяснение:
1-рассмотрим треугольники абс и адс. т.к. ад равно аб и и угол дас равен углу бас (по усл) то ас- общая стоона следовательно треугольники равны по трем сторонам, а т.к. треугольники равно то их стороны будут равны. следовательно бсравно дс 2-т.к. ас и дс равны (как диагонали трапеции) следовательно это равнобедренная трапеция. у равнобедренной трапеции 2 стороны равны то следовательно да равно сб3- т.к. абсд это параллелограмм и ДА равно СБ по условию, то следовательно их диагонали будут равны. ас и бд и есть диагонали . следовательно они равныA1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает