1. Угол будет равен 36°. Т. к. а||b, третья прямая секущая, а углы соответственные
2. Т. к. a||b, третья прямая секущая, то углы будут равны по 90° как соответственные. Верхний угол делит биссектриса, полученные углы будут по 45°
3. Т. к. a||b, То соответственные углы будут по 108°. Два правых угла смежные, в сумме дают 180°, зн. 180° - 108° = 72°
7. Т. к. a||b, с - секущая, то внутренние накрест лежащие углы будут по 130°. Один из них образует с другим смежный, который равен 50°. Искомый угол будет для него вертикальным и равен ему, 50°
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
1. Угол будет равен 36°. Т. к. а||b, третья прямая секущая, а углы соответственные
2. Т. к. a||b, третья прямая секущая, то углы будут равны по 90° как соответственные. Верхний угол делит биссектриса, полученные углы будут по 45°
3. Т. к. a||b, То соответственные углы будут по 108°. Два правых угла смежные, в сумме дают 180°, зн. 180° - 108° = 72°
7. Т. к. a||b, с - секущая, то внутренние накрест лежащие углы будут по 130°. Один из них образует с другим смежный, который равен 50°. Искомый угол будет для него вертикальным и равен ему, 50°
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.