Обозначим центр данной окружности точкой O.
AB ∩ CD = O, как диаметры данной окружности
Рассмотрим ΔCOA и ΔDOB:
AO = OB, как радиусы одной окружности
OC = OD, как радиусы одной окружности
∠COA = ∠BOD, как вертикальные
⇒ ΔCOA = ΔDOB, по I признаку равенства треугольников (по двум сторонам и углу между ними)
⇒ ∠OCA = ∠ODB, как накрест лежащие при пересечении AC и BD секущей CD
⇒ AC || BD
ч.т.д.
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.
Обозначим центр данной окружности точкой O.
AB ∩ CD = O, как диаметры данной окружности
Рассмотрим ΔCOA и ΔDOB:
AO = OB, как радиусы одной окружности
OC = OD, как радиусы одной окружности
∠COA = ∠BOD, как вертикальные
⇒ ΔCOA = ΔDOB, по I признаку равенства треугольников (по двум сторонам и углу между ними)
В равных треугольниках соответствующие стороны и углы равны.⇒ ∠OCA = ∠ODB, как накрест лежащие при пересечении AC и BD секущей CD
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.⇒ AC || BD
ч.т.д.
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.