И примем во внимание, что получающиеся трапеции подобны не исходной.
Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
---
Делим трапецию:
1 отрезок между основаниями исходной: х²=2*8=16 х=√16=4
Второй отрезок между первым и основанием исходной трапеции у²=4*8=32 у =√32=4√2
Третий отрезок - идет под меньшим основанием z²=2*4=8 z=2√2
---------------------------
Отрезки в рисунке идут в таком порядке
z, x, y
---------------
Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен
4:2√2=2:√2=2√2:√2·√2=2√2:2=√2
k=√2
Площади подобных фигур относяся как квадрат коэффициента их подобия.
Для этих трапеций это
(√2)²=2 Площадь второй по величине относится к нижней -большей- как 1:2=1/2 Третьей ко второй 1/2:2=1/4 и последней 1/8 сложим площади 1/2+1/4+1/8 =( 4+2+1)/8=7/8
7/8 < 1 Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх
Обязательно смотрим рисунок.
И примем во внимание, что получающиеся трапеции подобны не исходной.
Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
---
Делим трапецию:
1 отрезок между основаниями исходной:
х²=2*8=16
х=√16=4
Второй отрезок между первым и основанием исходной трапеции
у²=4*8=32
у =√32=4√2
Третий отрезок - идет под меньшим основанием
z²=2*4=8
z=2√2
---------------------------
Отрезки в рисунке идут в таком порядке
z, x, y
---------------
Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен
4:2√2=2:√2=2√2:√2·√2=2√2:2=√2
k=√2
Площади подобных фигур относяся как квадрат коэффициента их подобия.
Для этих трапеций это
(√2)²=2
Площадь второй по величине относится к нижней -большей- как 1:2=1/2
Третьей ко второй 1/2:2=1/4
и последней
1/8
сложим площади
1/2+1/4+1/8 =( 4+2+1)/8=7/8
7/8 < 1
Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх
(3,5-1,3) = 1,1 это растояние которое по бокам те маленькие тругольники
2 они будут по 1,1 см с каждой стороны .
те 2 треугольника одинаковы(это врятлу нужно)
находим тот катет или высоту (это одно и тоже)
по теореме пифарога 6,1^2=(1,1^2 + х) (х это твоя высота)
получается 36 его нужно поставить под квадратный корень и получится 6 см вот и все) извини за ту хрень