Решите задачи:
1.Образующая конуса равна 18 см и наклонена к плоскости основания под углом 600.Найдите площадь осевого сечения.
А) 9√ 3 см2 Б) 81√3 см2 В) 9 см2 Г) 24 см2.
2.Диаметр основания цилиндра равен 3 см, высота 9 см. Найдите диагональ осевого сечения цилиндра.
А) 90 см Б) 81 см В) 3√10 см Г) 9√10 см.
3.Диагональ осевого сечения цилиндра равна 4 дм. Угол между этой диагональю и плоскостью основания цилиндра 450. Вычислите длину высоты цилиндра и радиус основания.
А) 2√2дм ; √2дм; Б) 2дм; 4дм; В) 10√2дм ; 2√2 дм;
Г) 8дм; 6дм.
Задачи с практическим содержанием.
1.Вычислить площадь поверхности купола, имеющего форму полушара, у которого диаметр 5,25 м.
2.Чтобы вы предпочли: съесть арбуз радиуса 15 см вчетвером или арбуз радиуса 20 см ввосьмером?
3.При строительстве метро применяли кольца из железобетона с внешним радиусом 5,5 м и внутренним 5,1 м. Чему равен объем такого кольца длиной 100 м?
4.Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Сколько листов кровельного железа потребуется для этой крыши, если размер листа
0,7 м х 1,4 м, а на швы и обрезки тратиться 10% от площади крыши
10)
1. AO=OK (по условию)
2. OC - общая сторона
3. т.к.
углы АОВ и АОС - смежные АОС= 180 - АОВ
углы КОВ и КОС - смежные КОС = 180 - КОВ
КОВ = АОВ (по условию) значит
АОС = 180 - АОВ = 180 - КОВ = КОС
4. треугольники АОС и КОС равны по двух сторонам и углу между ними
9)Треугольники АВК и МКС равны по двум сторонам и углу между ними (первый признак), так как ВК=МК, АК=КС (дано) и угол АКВ равен углу СКМ, как вертикальные.
8)Рассмотрим ΔAOK и ΔBOC : СО=ОА по условию,ВО=ОК по условию,∠СОВ=∠КОА как вертикальные. Значит ΔAOK = ΔBOC по первому признаку равенства треугольников :"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны"
5)по 1 признаку
3)треугольник АЕО =ВКС т.к
1) АЕ=СК (по условию)
2) ЕО=СВ (по условию)
3) угол АОЕ=ВСК (по условию)
2)2.
Рассмотрим ∆CBO и ∆AKO:
KO=CO; AO=BO; ∠AOK=∠BOC.
∆CBO = ∆AKO по двум сторонам и углу между ними.
1)1.
Рассмотрим ∆ABC и ∆AKC:
AC - общая; BC=KC; ∠ACK=∠ACB.
∆ABC = ∆AKC по двум сторонам и углу между ними.
Объяснение:
Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
1) р=(17+65+80):2=81
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/80 * √(81*64*16*1) = 1/40 * √82944 = 1/40 * 288 = 7,2
2) р=(8+6+4):2=9
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/8 * √(9*1*3*5) = 1/4 * √135 = 1/4 * 3√15= 0,75√15
3) р=(24+25+7):2=28
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/25 * √(28*4*3*21) = 2/25 * √7056 = 2/25 * 84 = 6,72
4) ) р=(30+34+16):2=40
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/34 * √(40*10*6*24) = 1/17 * √57600 = 1/17 * 240 = 1 17/70.