Решите задачу: на рисунке изображена правильная треугольная пирамида SABC. Точки К, N, М – середины ребер SA, SB, AB соответственно. Точка F делит ребро SC в отношении 1: 3, считая от вершины S; SO – перпендикуляр к плоскости ABC. Укажите: 1) Прямую, параллельную плоскости АВС, 2) Прямые, скрещивающиеся с прямой АВ; 3) Угол наклона ребра SC к плоскости АВС; 4) Линейный угол двугранного угла SABC.
СН = sin В * 3 корня из 2 = sin 30 * 3корня из 2 = 0,5*3 корня из 2 = 1,5 корня из 2
НВ в квадрате = (3 корня из 2) в квадрате - (1,5 корня из 2)в квадрате = 9*2 - 9/2= 13,5
НВ = корень из 13,5 = 3 корня из 1,5
АН = СН= 1,5 корня из 2 так как треугольник равнобедренный (углы при основании АС равны 45).
АВ = АН + НВ = 1,5 корня из 2 + 3 корня из 1,5
АС = корень из (АН в квадрате + СН в квадрате) = корень из (4,5+4,5)=3
ОТВЕТ угол А = 45
АВ= 1,5 корня из 2 + 3 корня из 1,5
АС=3
A - B = 80
внешний угол при вершине А больше внешнего угла при вершине B в 2 раза. Внешний угол - это разность между 180° и внутренним углом. То есть внешний угол при вешине А равен 180°- A, при вершине B 180°- B. Т.к. При вершине А внешний угол больше в 2 раза, то
Получаем систему уравнений:
Тогда угол C равен 180°- 100°- 20° = 60°
Внешние углы равны:
при вершине А 180°- 20° = 160°;
при вершине B 180°- 100°= 80°;
при вершине C 180°- 60° = 120°.
Наибольшая разность - это разность между максимальным значением и минимальным, т.е. 160°- 80° = 80°, разность между внешними углами при А и при С.