1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
-Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом. -Основные свойства ромба1. Имеет все свойства параллелограмма2. Диагонали перпендикулярны:
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:
AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба.6. В любой ромб можно вписать окружность.7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей. -Определение. Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.Формулы определения площади ромба:1. Формула площади ромба через сторону и высоту:
S = a · ha
2. Формула площади ромба через сторону и синус любого угла:
S = a2 · sinα
3. Формула площади ромба через сторону и радиус:
S = 2a · r
4. Формула площади ромба через две диагонали:
S = 1d1d225. Формула площади ромба через синус угла и радиус вписанной окружности:
S = 4r2sinα6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):
Доказательства в объяснении.
Объяснение:
1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
Что и требовалось доказать.
Объяснение:
-Основные свойства ромба1. Имеет все свойства параллелограмма2. Диагонали перпендикулярны:
AC┴BD
3. Диагонали являются биссектрисами его углов:∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба.6. В любой ромб можно вписать окружность.7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.-Определение. Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.Формулы определения площади ромба:1. Формула площади ромба через сторону и высоту:
S = a · ha
2. Формула площади ромба через сторону и синус любого угла:S = a2 · sinα
3. Формула площади ромба через сторону и радиус:S = 2a · r
4. Формула площади ромба через две диагонали:S = 1d1d225. Формула площади ромба через синус угла и радиус вписанной окружности:
S = 4r2sinα6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):
S = 1d12 · tg(α/2)2S = 1d22 · tg(β/2)2