Решите желательно с дано и рисунком радиус окружности, вписанной в прямоугольный треугольник, равен 2 см, а сумма катетов равна 17 см. найдите периметр треугольника и его площадь.
Пусть расстояние от вершины одного острого угла до точки касания равно х Тогда один катет равен х+2 Второй 17-х-2 Гипотенуза равна сумме отрезков от острых углов треугольника до точек касания с окружностью по свойству касательных из одной точки к окружности. х+ 17-х-2-2=13cм По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов: (17 -х)²+х²=13² 289-34х+х²+х²=169 2х²-34х +120=0 D = b² - 4ac = 196 х1=5 см х2=12 см Один катет равен 5, второй 12 Площадь равна половине произведения катетов и равна 5*12:2=30 см²
Тогда один катет равен
х+2
Второй
17-х-2
Гипотенуза равна сумме отрезков от острых углов треугольника до точек касания с окружностью по свойству касательных из одной точки к окружности.
х+ 17-х-2-2=13cм
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов:
(17 -х)²+х²=13²
289-34х+х²+х²=169
2х²-34х +120=0
D = b² - 4ac = 196
х1=5 см
х2=12 см
Один катет равен 5, второй 12
Площадь равна половине произведения катетов и равна
5*12:2=30 см²
Проверка
5²+12²=169
169=169
√169=13