При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения - шаровой сектор радиуса R=ОА и высотой сектора h=DA. Объем его вычисляется по формуле: V= (2/3)*πR²*h. Рассмотрим сечение этого сектора (смотри рисунок): В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2. Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2. V=(2/3)*π*R²*R/2=(1/3)πR³.
1) Площадь параллелограмма вычисляется умножением его высоты, проведенной к стороне, на которую она опущена.
Опустим высоту из тупого угла к большей стороне параллелограмма. Она, как катет получившегося прямоугольного треугольника, противолежащий углу 30 градусов, равна половине длины меньшей стороны параллелограмма и равна 8:2=4см S пар.=4*14=56 см²
2) Повторим: Площадь параллелограмма вычисляется умножением его высоты, проведенной к стороне, на которую она опущена. S=ah 26=6,5·h h=26:6,5=4 cм
3) Площадь треугольника равна половине произведения его высоты на длину стороны, к которой эта высота проведена. S=ah:2 a=2h по условию задачи Выразим площадь данного конктретного треугольника, подставив значение a=2h 64=2h·h:2 h²=64 h=8 см а=2h=16 см
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.
1)
Площадь параллелограмма вычисляется умножением его высоты, проведенной к стороне, на которую она опущена.
Опустим высоту из тупого угла к большей стороне параллелограмма.
Она, как катет получившегося прямоугольного треугольника, противолежащий углу 30 градусов, равна половине длины меньшей стороны параллелограмма и равна
8:2=4см
S пар.=4*14=56 см²
2)
Повторим: Площадь параллелограмма вычисляется умножением его высоты, проведенной к стороне, на которую она опущена.
S=ah
26=6,5·h
h=26:6,5=4 cм
3)
Площадь треугольника равна половине произведения его высоты на длину стороны, к которой эта высота проведена.
S=ah:2
a=2h по условию задачи
Выразим площадь данного конктретного треугольника, подставив значение a=2h
64=2h·h:2
h²=64
h=8 см
а=2h=16 см