Розв’язати задачі за наданими умовами.
1. Основи трапеції ABCD (AD || BC) дорівнюють 6 см і 14 см, а діа¬гональ BD точкою перетину діагоналей ділиться на відрізки, один із яких на 2 см більший від іншого. Знайдіть довжину діагоналі BD трапеції.
2. Сторони АВ і АС трикутника ABC пов'язані відношенням АС – АВ = 9 см. АК — бісектриса кута А трикутника ABC, ВК : КС = 4 : 7. Знайдіть сторони АВ і АС.
3. Бічна сторона рівнобедреного трикутника дорівнює 9 см, а осно¬ва — 6 см. До бічних сторін трикутника проведені висоти. Знай¬діть довжину відрізка, кінцями якого є основи висот.
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.