с геометрией 5. 3 точки М плоскости & проведено перпендикуляр МО и наклонные МА и МВ, которые образуют с перпендикуляром углы 60 ° i 45 ° соответственно. Найти расстояние между основаниями наклонных, если наклонные взаимно перпендикулярны, а длина перпендикулярна равна √3 см.
6. Через вершину А треугольника АМD, у которого АМ=AD =5 см, MD=6 см к его плоскости проведен перпендикуляр АK=4√3см. Найти расстояние от точки К к стороне MD.
Площади подобных треугольников относятся, как квадраты коэффициента их подобия
25:16=k²
k=√(25:16)=5:4
Следовательно, основания трапеции относятся, как 5:4
Обозначим
высоту ᐃ ВОС=h₁
высоту ᐃ АОD=h₂
S АОD=h₂·АD:2
S ВОС=h₁·ВС:2
Площадь трапеции равна произведению ее высоты на полусумму оснований:
Высота трапеции Н
S ABCD=Н·(АD+ВС):2
Н=h₂+h₁
S ABCD =(h₁+h₂)·(АD+ВС):2=
=h₁·АD+h₂·АD+h1·ВС+h₂·ВС
1)
Применим свойство пропорции: произведение средних членов пропорции равно произведению крайних.
h₂:h₁=5:4
4h₂=5h₁
h₂=5h₁/4
S AOD=h₂·АD:2=5h₁/4·АD:2
25=5h₁/4·АD:2 Умножим на два обе части уравнения
12,5=5h₁/4·АD
5h₁/4 =12,5:AD
h₁:4=2,5:AD
h₁·AD= 4·2,5 =10 см²
Т.к. площади боковых треугольников у трапеции равны равны, то h₂·ВС=10 см²
Проверим это:
2)
h₂:h₁=5:4
5h₁=4h₂
h₁=4h₂/5
S ВОС=h₁·ВС:2=4h₂/5·ВС:2
16=4h₂/5·ВС:2 Умножим на два обе части уравнения
8=4h₂/5·ВС
4h₂:5=8:ВС
4h₂·ВС=8·5=40
h₂·ВС=40:4=10 см²
3) Подставим значения h₂·ВС и h₁·AD в уравнение площади трапеции
S ABCD=h₁·АD+25+16+h₂ВС=41+=h₁·АD+h₂·ВС =
S ABCD=10+25+16+10= 61 см
Тогда рассмотрим треугольник, образованный пересечением диагонали, где одна диагональ перпендикулярна стороне.
Данный треугольник прямоугольный, один из его катетов равен 1/2•24 см = 12 см, а гипотенуза равна 1/2•26 см = 13, см.
Теперь по теореме Пифагора можно найти сторону параллелограмма:
√13² - 12² = √169 - 144 = √25 = 5 см.
Площадь параллелограмма равна произведению высоты на сторону. Тут высотой является диагональ, равная 24 см.
Тогда площадь параллелограмма равна:
S = 24 см• 5 см = 120 см²
ответ: 120 см².