Номер 1
Пересеклись две прямые РК и ЕМ,в в итоге образовались две пары вертикальных углов
<ЕDK=<PDM=110 градусов
<РDE=<МDK=(360-110•2):2=(360-220):2=
140:2=70 градусов,как вертикальные
Теперь в обоих треугольниках мы знаем по два угла,вычислим неизвестные
<Е=180-(70+65)=180-135=45 градусов
<К=180-(70+45)=180-115=65 градусов
Треугольники ЕРD и MKD равны между собой по 2 признаку равенства треугольников-по стороне и двум прилежащим к ней углам
РЕ=МК ,по условию задачи
<К=<ЕРК=65 градусов
<Е=<ЕМК=45 градусов
Номер 2
В равнобедренном треугольнике углы при основании равны между собой
<А=<С=156:2=78 градусов
<В=180-156=24 градуса
Номер 3
Т к треугольники не только прямоугольные,но и равнобедренные,то углы их при основании равны и каждый угол равен 45 градусов
<САВ=<АСD=45 градусов
Эти углы называются внутренними накрест лежащими
Если при пересечении двух прямых АВ и CD третьей секущей АС,накрест лежащие углы равны,то AB||CD
Номер 4
Сумма острых углов прямоугольного треугольника равна 90 градусов
90-60=30 градусов
Катет,лежащий против угла 30 градусов,в два раза меньше гипотенузы
Катет Х
Гипотенуза 2Х
ЗХ=42 см
Х=42:3=14 см
Гипотенуза равна
2•14=28 см
Объяснение:
Решение
Первый Пусть указанные стороны равны a и 2a. Тогда по теореме косинусов квадрат третьей стороны равен
a2 + 4a2 - 2a . 2a . $\displaystyle {\textstyle\frac{1}{2}}$ = 3a2.
Пусть $ \alpha$ — угол данного треугольника, лежащий против стороны, равной 2a. Тогда по теореме косинусов
cos$\displaystyle \alpha$ = $\displaystyle {\frac{a^{2} + 3a^{2} - 4a^{2}}{2a\cdot a\sqrt{3}}}$ = 0.
Следовательно, $ \alpha$ = 90o.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
BC1 = $\displaystyle {\textstyle\frac{1}{2}}$AB = BC.
Значит, точка C1 совпадает с точкой C. Следовательно, $ \angle$ACB = 90o.
Номер 1
Пересеклись две прямые РК и ЕМ,в в итоге образовались две пары вертикальных углов
<ЕDK=<PDM=110 градусов
<РDE=<МDK=(360-110•2):2=(360-220):2=
140:2=70 градусов,как вертикальные
Теперь в обоих треугольниках мы знаем по два угла,вычислим неизвестные
<Е=180-(70+65)=180-135=45 градусов
<К=180-(70+45)=180-115=65 градусов
Треугольники ЕРD и MKD равны между собой по 2 признаку равенства треугольников-по стороне и двум прилежащим к ней углам
РЕ=МК ,по условию задачи
<К=<ЕРК=65 градусов
<Е=<ЕМК=45 градусов
Номер 2
В равнобедренном треугольнике углы при основании равны между собой
<А=<С=156:2=78 градусов
<В=180-156=24 градуса
Номер 3
Т к треугольники не только прямоугольные,но и равнобедренные,то углы их при основании равны и каждый угол равен 45 градусов
<САВ=<АСD=45 градусов
Эти углы называются внутренними накрест лежащими
Если при пересечении двух прямых АВ и CD третьей секущей АС,накрест лежащие углы равны,то AB||CD
Номер 4
Сумма острых углов прямоугольного треугольника равна 90 градусов
90-60=30 градусов
Катет,лежащий против угла 30 градусов,в два раза меньше гипотенузы
Катет Х
Гипотенуза 2Х
ЗХ=42 см
Х=42:3=14 см
Гипотенуза равна
2•14=28 см
Объяснение:
Объяснение:
Решение
Первый Пусть указанные стороны равны a и 2a. Тогда по теореме косинусов квадрат третьей стороны равен
a2 + 4a2 - 2a . 2a . $\displaystyle {\textstyle\frac{1}{2}}$ = 3a2.
Пусть $ \alpha$ — угол данного треугольника, лежащий против стороны, равной 2a. Тогда по теореме косинусов
cos$\displaystyle \alpha$ = $\displaystyle {\frac{a^{2} + 3a^{2} - 4a^{2}}{2a\cdot a\sqrt{3}}}$ = 0.
Следовательно, $ \alpha$ = 90o.
Второй Пусть угол между сторонами BC = a и AB = 2a треугольника ABC равен 60o. Опустим перпендикуляр AC1 из вершины A на прямую BC. Из прямоугольного треугольника ABC1 с углом 30o при вершине A находим, что
BC1 = $\displaystyle {\textstyle\frac{1}{2}}$AB = BC.
Значит, точка C1 совпадает с точкой C. Следовательно, $ \angle$ACB = 90o.