Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Проводим по одной высоте из каждого конца верхнего основания. Нижнее основании разделилось на 3 отрезка, а вся трапеция на 2 прямоугольных треугольника и прямоугольник.Средний отрезок равен верхнему основанию - 2, а два других в сумме дают 16 - 2 = 14. Обозначим левый за х, а правый за 14 - х, а высоту за h, тогда по т. Пифагора: 1) 2)
вычитаем, получаем:
Т.е. нижние отрезки 5 и 9 соответственно. Высота из любого из этих уравнений при подстановке 5 будет равна 12. Площадь равна полусумме оснований на высоту = 9*12 = 108 С другой стороны площадь трапеции равна произведению средней линии на высоту. Т.е. средняя линия равна 9.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Нижнее основании разделилось на 3 отрезка, а вся трапеция на 2 прямоугольных треугольника и прямоугольник.Средний отрезок равен верхнему основанию - 2, а два других в сумме дают 16 - 2 = 14.
Обозначим левый за х, а правый за 14 - х, а высоту за h, тогда по т. Пифагора:
1)
2)
вычитаем, получаем:
Т.е. нижние отрезки 5 и 9 соответственно.
Высота из любого из этих уравнений при подстановке 5 будет равна 12.
Площадь равна полусумме оснований на высоту = 9*12 = 108
С другой стороны площадь трапеции равна произведению средней линии на высоту.
Т.е. средняя линия равна 9.