1. Сумма двух векторов: начало второго вектора совмещается с концом первого, сумма же этих векторов есть вектор с началом, совпадающим с началом первого, и концом, совпадающим с концом 2-го.
Разделим вектор CB на 3 равные части. Для этого проведем из точки С луч "n" и отложим на нем циркулем 3 РАВНЫХ отрезка произвольной длины. Конец B' третьего отрезка соединим с точкой В, а из концов первого и второго отрезка проведем прямые, параллельные прямой BB'. Эти прямые и разделят вектор СВ на три равные части (теорема Фалеса).
Тогда вектор СЕ = (2/3)*СВ. Из конца Е вектора СЕ проведем прямую, параллельно CD. Эта прямая пересечет сторону CD в точке F. Вектор EF равен вектору CD. Тогда вектор CF = CE+EF или
CF = (2/3)*CB + CD, что и необходимо было построить.
2. Для получения вектора разности двух векторов (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом - конец вектора (a) (уменьшаемое). Тогда вектор разности векторов ВА и ВС есть вектор СА.
Разделим вектор СА на 4 равных части указанным выше используя луч СA' (добавив к 3 полученным ранее равным отрезкам четвертый BA').
Тогда вектор CG = (1/4)*СА = (1/4)*(ВА - ВС), что и необходимо было построить.
Все грани параллелепипеда - параллелограммы.
1. Ребра параллелепипеда, которые лежат на параллельных прямых (три группы таких ребер):
AB ║ CD ║ C₁D₁ ║ A₁B₁
AD ║ BC ║ B₁C₁ ║ A₁D₁
AA₁ ║ BB₁ ║ CC₁ ║ DD₁
2. Ребра параллелепипеда, которые лежат на скрещивающихся прямых:
АВ и A₁D₁; AB и B₁C₁; AB и CC₁; AB и DD₁;
AD и A₁B₁; AD и C₁D₁; AD и BB₁; AD и CC₁;
CD и A₁D₁; СD и B₁C₁; CD и AA₁; CD и BB₁;
BC и A₁B₁; BC и C₁D₁; BC и AA₁; BC и DD₁;
AA₁ и B₁C₁; AA₁ и C₁D₁;
BB₁ и A₁D₁; BB₁ и C₁D₁;
CC₁ и A₁B₁; CC₁ и A₁D₁;
DD₁ и A₁B₁; DD₁ и B₁C₁.
3. Грани параллелепипеда, принадлежащие параллельным плоскостям:
ABCD и A₁B₁C₁D₁;
AA₁B₁B и CC₁D₁D;
AA₁D₁D и BB₁C₁C.
4. По прямой В₁С₁ пересекаются грани A₁B₁C₁D₁ и BB₁C₁C.
Построение на рисунке.
Объяснение:
1. Сумма двух векторов: начало второго вектора совмещается с концом первого, сумма же этих векторов есть вектор с началом, совпадающим с началом первого, и концом, совпадающим с концом 2-го.
Разделим вектор CB на 3 равные части. Для этого проведем из точки С луч "n" и отложим на нем циркулем 3 РАВНЫХ отрезка произвольной длины. Конец B' третьего отрезка соединим с точкой В, а из концов первого и второго отрезка проведем прямые, параллельные прямой BB'. Эти прямые и разделят вектор СВ на три равные части (теорема Фалеса).
Тогда вектор СЕ = (2/3)*СВ. Из конца Е вектора СЕ проведем прямую, параллельно CD. Эта прямая пересечет сторону CD в точке F. Вектор EF равен вектору CD. Тогда вектор CF = CE+EF или
CF = (2/3)*CB + CD, что и необходимо было построить.
2. Для получения вектора разности двух векторов (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом - конец вектора (a) (уменьшаемое). Тогда вектор разности векторов ВА и ВС есть вектор СА.
Разделим вектор СА на 4 равных части указанным выше используя луч СA' (добавив к 3 полученным ранее равным отрезкам четвертый BA').
Тогда вектор CG = (1/4)*СА = (1/4)*(ВА - ВС), что и необходимо было построить.