Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.Пусть точка О1(х;у) середина АС тогдах=(-6+6)/2=0; у=(1-4)/2=-1,5.Пусть точка О2(х;у) середина BD тогдах=(0+0)/2=0; у=(5-8)/2=-1,5.Значит О1 совпадает с О2 - значит ABCD параллелограмм.О(0;-1,5) - точки пересечения его диагоналей.Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.АС^2=(6+6)^2+(-4-1)^2АС^2=12^2+(-5)^2АС^2=144+25AC^2=169AC=13BD^2=(0+0)^2+(-8-5)^2BD^2=0^2+(-13)^2BD^2=0+169BD^2=169BD=13AC=BDABCD - прямоугольник
Проведем через точку C прямую CF, параллельную BD, и продлим прямую AD до пересечения с CF. Четырехугольник BCFD — параллелограмм ( BC∥ DF как основания трапеции, BD∥ CF по построению). Значит, CF=BD, DF=BC и AF=AD+BC. Треугольник ACF прямоугольный (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой). Поскольку в равнобедренной трапеции диагонали равны, а CF=BD, то CF=AC, т.е. треугольник ACF — равнобедренный с основанием AF. Значит, его высота CN является также медианой. А так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине, то CN = a+b h = 2 где h — высота трапеции, a и b — ее основания
CF.
Четырехугольник BCFD — параллелограмм ( BC∥ DF как основания трапеции, BD∥ CF по
построению). Значит, CF=BD, DF=BC и AF=AD+BC.
Треугольник ACF прямоугольный (если прямая перпендикулярна одной из двух параллельных
прямых, то она перпендикулярна и другой прямой). Поскольку в равнобедренной трапеции
диагонали равны, а CF=BD, то CF=AC, т.е. треугольник ACF — равнобедренный с основанием AF.
Значит, его высота CN является также медианой. А так как медиана прямоугольного
треугольника, проведенная к гипотенузе, равна ее половине, то CN =
a+b
h =
2
где h — высота трапеции, a и b — ее основания