В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
GuardiaN55
GuardiaN55
14.11.2022 15:29 •  Геометрия

с Начертальной Геометрией,


с Начертальной Геометрией,

Показать ответ
Ответ:
polozyurayuras
polozyurayuras
10.01.2022 10:50
AB = CD так как трапеция равнобедренная,
∠ВАD = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников BAD и CDA, ⇒
ΔBAD = ΔCDA  по двум сторонам и углу между ними.

Значит ∠CAD = ∠BDA.
Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине:
ОН = AD/2

ΔВОС подобен ΔDOA по двум углам, значит и
ОК = ВС/2

КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.

Sabcd = (AD + BC)/2 · KH = KH · KH = 18² = 324 см²

И вообще, в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней  линии трапеции (или полусумме оснований).
0,0(0 оценок)
Ответ:
katevyb
katevyb
28.03.2022 03:06
Свойства параллельных прямых 

Теорема 

Две прямые, параллельные третьей, параллельны. 

Доказательство. 

Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана. 

Теорема 

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. 

Доказательство. 

Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. 
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана. 

На основании теоремы доказывается: 

Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны. 

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота