с рисунком Через вершини паралелограма та точку перетину його діагоналей проведено паралельні прямі до перетину з площиною, яка не має з паралелограмом спільних точок. Довжини відрізків цих прямих від двох суміжних вершин та точки перетину діагоналей паралелограма до площини відповідно дорівнюють 61, 45 та 51 см.
Обчисліть довжини відрізків від двох інших вершин паралелограма до цієї площини.
хоть с рисунком by
Рисунок 1
Сначала вычислим б)-длину проекции отрезка МС на плоскость квадрата.
Так как МС=МД=МА=МВ и исходят из общей вершины М,
то проекции этих наклонных на плоскость квадрата равны.
М проецируется в точку О пересечения диагоналей квадрата.
В квадрате d=а√2, где d- его диагональ, а - сторона.
ОС= АС:2
ОС= (8√2):2=4√2
Расстояние от точки М до плоскости квадрата найдем из прямоугольного треугольника МОС по т. Пифагора:
МО=√(МС²-ОС²)=√(256-32)=√224=4√14
---------------------------
Задача 2
рисунок 2)
Расстояние от точки до плоскости измеряется перпендикуляром к ней.
КН - перпендикуляр и равен 5.
Гипотенуза МК треугольника МРК по т. Пифагора
МК=√225=15
Проекцию МН гипотенузы МК найдем из прямоугольного треугольника МНК
( вспомним теорему о трех перпендикулярах. НК - перпендикулярна прямой НР на плоскости, след. МН, как проекция МК, также перпендикулярна НР).
МН²=МК²-КН²
МН=√200=10√2
-----------------
Задача 3
Рисунок 3
Искомое расстояние ВН - катет каждого из прямоугольных треугольников, образованных наклонными АВ и ВС, их проекциями АН и НС на плоскость и расстоянием ВН от их общего конца В до плоскости.
ПУсть АН=х, тогда НС=2х ( из отношения АН:НС=1:2)
ВН²=АВ²-х²
ВН²=ВС²-(2х)²
АВ²-х²=ВС²-(2х)²
49-х²=100-4х²
3х²=51 х²=17
Из треугольника АВН найдем ВН.
ВН²=49-17=32
ВН=√32=4√2