с задачей ! Основание прямой призмы, нарисованной в цилиндре, представляет собой прямоугольный треугольник. Вычислите объем цилиндра, если длина одного катетера 12 см, его угол 60 °, длина диагонали наименьшей боковой грани призмы 16 см!
Пусть ∠АВМ = х, тогда и ∠МВК = х (так как ВО - биссектриса ∠АВС) ; ∠ВАМ = ∠МАО = у (так как АК - биссектриса ∠ВАС).
Рассмотрим ΔАМВ. ∠ВМК - внешний, и так как он с ∠АМВ смежный, то ∠ВМК = 180°-177° = 3°. Так как ∠ВМК - внешний, то он равен сумме углов не смежных с ним. То есть, х+y = 3°.
Решение: (поставьте точку О на стороне АС при пересечении её прямой ВМ)
Дано : ΔАВС, АВ=ВС, АО=ОС
НАйти: АМ=МС
Решение: По условиям задачи ΔАВС - равнобедренный,а ВО- есть медиана , проведенная из вершины равнобедренного треугольника к его основанию. Согласно свойству равнобедренного треугольника : медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Значит ∠АВМ=∠СВМ( т.к. ВО- биссектриса). Рассмотрим ΔАВМ и ΔСВМ.
где АВ=ВС, ВМ- общая и ∠АВМ=∠СВМ. Согласно первому признаку равенства треугольников( Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам другого треугольника и углу между ними, то такие треугольники равны) ΔАВМ = ΔСВМ . Значит АМ = СМ.
И так как АМ=С М, то ΔАМС есть равнобедренный по определению равнобедренных Δ-ков(Треугольник, у которого две стороны равны, называют равнобедренным треугольником), что и требовалось доказать.
Чертёж смотрите во вложении.
Дано:
ΔАВС.
ВО - биссектриса ∠АВС.
АК - биссектриса ∠ВАС.
Точка М - точка пересечения ВО и АК.
∠АМВ = 177°.
Найти:
∠ВСА = ?
Пусть ∠АВМ = х, тогда и ∠МВК = х (так как ВО - биссектриса ∠АВС) ; ∠ВАМ = ∠МАО = у (так как АК - биссектриса ∠ВАС).
Рассмотрим ΔАМВ. ∠ВМК - внешний, и так как он с ∠АМВ смежный, то ∠ВМК = 180°-177° = 3°. Так как ∠ВМК - внешний, то он равен сумме углов не смежных с ним. То есть, х+y = 3°.
∠АВС = x+x = 2x
∠ВАС = у+у = 2у.
х+у = 3°
2*(х+у) = 2*3°
2х+2у = 6°.
Тогда, по теореме о сумме углов треугольника -
∠ВСА = 180°-(2х+2у)
∠ВСА = 180°-6°
∠ВСА = 174°.
ответ: 174°.
Решение: (поставьте точку О на стороне АС при пересечении её прямой ВМ)
Дано : ΔАВС, АВ=ВС, АО=ОС
НАйти: АМ=МС
Решение: По условиям задачи ΔАВС - равнобедренный,а ВО- есть медиана , проведенная из вершины равнобедренного треугольника к его основанию. Согласно свойству равнобедренного треугольника : медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Значит ∠АВМ=∠СВМ( т.к. ВО- биссектриса). Рассмотрим ΔАВМ и ΔСВМ.
где АВ=ВС, ВМ- общая и ∠АВМ=∠СВМ. Согласно первому признаку равенства треугольников( Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам другого треугольника и углу между ними, то такие треугольники равны) ΔАВМ = ΔСВМ . Значит АМ = СМ.
И так как АМ=С М, то ΔАМС есть равнобедренный по определению равнобедренных Δ-ков(Треугольник, у которого две стороны равны, называют равнобедренным треугольником), что и требовалось доказать.