Дан ромб АВСД, диагональ Ас делит его на два равных треугольника АВСД и АДС, в равносторонний треугольник АВС вписана окружность, по формуле радиус вписанной в правильный треугольник окружности равен:а/2корня; где а- сторона ромба. Откуда, а=2корня3, т.к. Радиус равен1. Т.к. Треугольник равносторонний, то АС-диагональ, равна 2корня из 3 Проведем высоту ВН, получается прямоугольный треугольник по теореме Пифагора ВН=корень из АВ квадрат-АН квадрат=корень из 12-3=3. Т.к. Ромб-частный случай параллелограмма, то его диагонали точкой пересечения делятся пополам, значит диагональ ВД=6. Площадь ромба равна произведение диагоналей напополам, т.е. 6корней из 3
Можно пристроить к кубу ABCDA1B1C1D1 другой такой же куб следующим образом. Продлим ребра А1А, В1В, С1С, D1D за точки А,В,С,D. на длину ребра куба и через полученные точки A2,B2,C2,D2 проведем плоскость II АВС. Ясно, что я просто "приставил снизу" еще один куб, идентичный исходному.
Очевидно, что А2С II AC1, поэтому угол между СЕ и АС1 равен углу А2СЕ.
Замкнем треугольник А2СЕ, проведя А2Е в плоскости А2А1D1D2.
В треугольнике А2СЕ очень просто вычисляются все стороны.
A2C = √3; (это - диагональ куба, ребро принимаем за единицу длины, то есть ребро куба 1).
из прямоугольного тр-ка А2ЕD2 с катетами A2D2 = 1; D2E = 3/2; находим
А2Е = √(1^2+(3/2)^2) = √13/2;
аналогично из треугольника DCE
CЕ = √(1 + (1/2)^2) = √5/2;
Обозначим косинус угла А2СЕ как х. По теореме косинусов
Можно пристроить к кубу ABCDA1B1C1D1 другой такой же куб следующим образом. Продлим ребра А1А, В1В, С1С, D1D за точки А,В,С,D. на длину ребра куба и через полученные точки A2,B2,C2,D2 проведем плоскость II АВС. Ясно, что я просто "приставил снизу" еще один куб, идентичный исходному.
Очевидно, что А2С II AC1, поэтому угол между СЕ и АС1 равен углу А2СЕ.
Замкнем треугольник А2СЕ, проведя А2Е в плоскости А2А1D1D2.
В треугольнике А2СЕ очень просто вычисляются все стороны.
A2C = √3; (это - диагональ куба, ребро принимаем за единицу длины, то есть ребро куба 1).
из прямоугольного тр-ка А2ЕD2 с катетами A2D2 = 1; D2E = 3/2; находим
А2Е = √(1^2+(3/2)^2) = √13/2;
аналогично из треугольника DCE
CЕ = √(1 + (1/2)^2) = √5/2;
Обозначим косинус угла А2СЕ как х. По теореме косинусов
13/4 = 3+5/4 - x*2*√(5*3)/2;
x = 1/√15 = √15/15; это - косинус искомого угла.