Два перпендикуляра к одной плоскости параллельны. Значит АА₁║ВВ₁. Две параллельные прямые задают плоскость, которая пересекает данную плоскость по прямой А₁В₁. Так как отрезок АВ лежит в плоскости (АВВ₁), то и точка D лежит на линии пересечения плоскостей. Т.е. точки А₁, В₁ и D лежат на одной прямой.
∠ADA₁ = ∠BDB₁ как вертикальные, ∠AA₁D = ∠BB₁D = 90° по условию, значит ΔAA₁D подобен ΔBB₁D по двум углам.
ΔAA₁D: ∠AA₁D = 90°, по теореме Пифагора DA₁ = √(DA² - AA₁²) = √(25 - 9) = √16 = 4 см B₁D : A₁D = BD : AD = BB₁ : AA₁ = 2 : 1 BB₁ : 3 = 2 : 1 ⇒ ВВ₁ = 6 см BD : 5 = 2 : 1 ⇒ BD = 10 см АВ = AD + DB = 5 + 10 = 15 см
АА₁║ВВ₁.
Две параллельные прямые задают плоскость, которая пересекает данную плоскость по прямой А₁В₁. Так как отрезок АВ лежит в плоскости (АВВ₁), то и точка D лежит на линии пересечения плоскостей.
Т.е. точки А₁, В₁ и D лежат на одной прямой.
∠ADA₁ = ∠BDB₁ как вертикальные,
∠AA₁D = ∠BB₁D = 90° по условию, значит
ΔAA₁D подобен ΔBB₁D по двум углам.
ΔAA₁D: ∠AA₁D = 90°, по теореме Пифагора
DA₁ = √(DA² - AA₁²) = √(25 - 9) = √16 = 4 см
B₁D : A₁D = BD : AD = BB₁ : AA₁ = 2 : 1
BB₁ : 3 = 2 : 1 ⇒ ВВ₁ = 6 см
BD : 5 = 2 : 1 ⇒ BD = 10 см
АВ = AD + DB = 5 + 10 = 15 см
2
Угол А + угол С =156°
угол В=180 - (угол А+ угол С)=180-156=24°
т.к углы при основании равнобедренного треугольника равны, то:
угол А=угол С= 1/2•156=78°
ответ:79;24;78
1
т.к угол АОС=110°
то угол DOC=180- угол АОС=180-110=70°(т.к смежные углы в сумме дают 180°)
угол ВОА=углу DOC=70°(т.к вертикальные)
Рассмотрим треугольник СОD
(угол ОDC=углу ADC)
угол С= 180 - угол DOC- угол ODC=180-70-45=65°
Рассмотрим треугольник ВАО
(угол АВС=АВО)
угол ВАО=180- угол АВО- угол ВОА=180-65-70=45°
т.к угол ВАО=ODC=45°
т.к АВ=CD
т.к угол АВО=C=65°
то треугольники равны по 2 ому признаку