Основание и боковая сторона равнобедренного треугольника равны 120 см и 68 см соответственно. Точка A находится на расстоянии 25 см от каждой прямой, содержащей сторону треугольника. Проекцией точки A на плоскость треугольника является точка, принадлежащая этому треугольнику. Найдите расстояние от точки A до плоскости треугольника.
20 см
Объяснение:
Опустим перпендикуляр АО к плоскости треугольника.
АО - искомое расстояние от точки А до плоскости треугольника.
АК, АР и АН - перпендикуляры к сторонам треугольника ВЕС.
По условию АК = АР = АН = 25 см.
ОК⊥ВЕ, ОР⊥ЕС, ОН⊥ВС по теореме о трех перпендикулярах.
ОК = ОР = ОН как проекции равных наклонных, проведенных из одной точки.
То есть, точка О равноудалена от сторон треугольника, значит О - центр окружности, вписанной в треугольник ВЕС, ОК, ОР, ОН - радиусы вписанной окружности.
ΔВЕС равнобедренный, центр вписанной окружности лежит на высоте, проведенной к основанию ( ЕН ), которая является медианой, ВН = 0,5 ВС = 60 см.
Из прямоугольного треугольника ВЕН по теореме Пифагора:
см
Площадь треугольника ВЕС:
см²
Найдем радиус вписанной в треугольник окружности по формуле:
2. 4+7=11 (частей) Одна часть: 44/11 = 2 Большее основание равно: 2*4=8 см Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD. Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC. В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD. Что и требовалось доказать.
Основание и боковая сторона равнобедренного треугольника равны 120 см и 68 см соответственно. Точка A находится на расстоянии 25 см от каждой прямой, содержащей сторону треугольника. Проекцией точки A на плоскость треугольника является точка, принадлежащая этому треугольнику. Найдите расстояние от точки A до плоскости треугольника.
20 см
Объяснение:
Опустим перпендикуляр АО к плоскости треугольника.
АО - искомое расстояние от точки А до плоскости треугольника.
АК, АР и АН - перпендикуляры к сторонам треугольника ВЕС.
По условию АК = АР = АН = 25 см.
ОК⊥ВЕ, ОР⊥ЕС, ОН⊥ВС по теореме о трех перпендикулярах.
ОК = ОР = ОН как проекции равных наклонных, проведенных из одной точки.
То есть, точка О равноудалена от сторон треугольника, значит О - центр окружности, вписанной в треугольник ВЕС, ОК, ОР, ОН - радиусы вписанной окружности.
ΔВЕС равнобедренный, центр вписанной окружности лежит на высоте, проведенной к основанию ( ЕН ), которая является медианой, ВН = 0,5 ВС = 60 см.
Из прямоугольного треугольника ВЕН по теореме Пифагора:
см
Площадь треугольника ВЕС:
см²
Найдем радиус вписанной в треугольник окружности по формуле:
где p - полупериметр.
см
см
ΔАОК: ∠АОК = 90°, ОК = r = 15 см, АК = 25 см,
по теореме Пифагора
AO² = AK² - OK² = 25² - 15² = 625 - 225 = 400
AO = √400 = 20 см
Р=10+12+14=36 см
2. 4+7=11 (частей)
Одна часть: 44/11 = 2
Большее основание равно: 2*4=8 см
Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD.
Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC.
В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD.
Что и требовалось доказать.