Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Сторона вписанного правильного многоугольника образует с радиусами описанной около него окружности равносторонний треугольник. В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника: Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае: Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2). То есть центральный угол тупой и равен 120°. Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае R=(√3/3)*12=4√3, что соответствует условию задачи.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника:
Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае:
Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2).
То есть центральный угол тупой и равен 120°.
Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае
R=(√3/3)*12=4√3, что соответствует условию задачи.