сделать Тест по геометрии!!
1. В окружности с центром О проведены диаметр АС и радиус ОВ так, что хорда ВС равна радиусу. Найти АОВ, если ВСО = 60°.
2. На прямой даны две точки C и B, находящиеся на расстоянии 5 см друг от друга. Если на продолжении луча BC отложить отрезок BN равный 3BC.
Какова будет длина отрезка BN?
3. На рисунке O – центр окружности, АВ – диаметр окружности. Отрезки АD и ВС, перпендикулярны к отрезку АВ. АВ = 8 см, ОС = 5 см, СВ = 3 см. Чему равен периметр ∆AOD?
4.На прямой даны две точки C и B, находящиеся на расстоянии 7 см друг от друга. Если на продолжении луча BC отложить отрезок BN равный 1,5BC, то какова будет длина отрезка BN?
5. На рисунке CD = AB, O – центр окружности. Точки A, B, C, D лежат на окружности. АВ = 10 см, ВO = 12 см.
Найдите периметр ∆СOD.
Картинка:https://resh.edu.ru/uploads/lesson_extract/7289/20200113114056/OEBPS/objects/t_geom_7_16_14/5dbf5fc0e2002477581008c3.png
2)
sinA =5,25/14 (геом определение синуса)
x/sinA =2*8 (т синусов) => x =16*5,25/14 =6
3)
x+3 =y+2 (описанный ч-к) => y-x=1
Диагональ по т косинусов; cos120= -0,5; cos60=0,5
x^2 +y^2 +xy =9 +4 -2*3*2*0,5 =7
(x-y)^2 =7 -3xy => 1 =7 -3xy => xy=2
(x+y)^2 =7 +xy =9 => x+y=3
4)
sinB =sin(45+30) =√2/2 *√3/2 + √2/2 *1/2 =(√6 +√2)/4
2/sin45 =AC/sinB (т синусов) => AC =2√2(√6 +√2)/4 =√3 +1
√k +1 =√3 +1 => k=3
5)
AB=a, AD=b
P =2(a+b) => a+b =9
S =ab sinA => ab =20
a^2 +b^2 =(a+b)^2 -2ab =81-40 =41
cosA = −√(1-sinA^2) = −3/5 (тупой угол)
BD^2 =a^2 +b^2 -2ab*cosA (т косинусов) =41 +40*3/5 =65
1)Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.
2)периметр - это сумма длин сторон какой-либо геометрической фигуры. Полупериметр - половина периметра.
3)Два треугольника, которые можно совместить наложением, называются равными. ... Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
4)Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противоположную сторону треугольника. * Прямые, содержащие высоты треугольника, пересекаются в одной точке (которая называется ортоцентром данного треугольника).
Объяснение: