Пусть у нас правильная пирамида МАВСД,где вершина пирамиды точка М.МО перпендикулярна плоскости основания и точка О-точка пересечения диагоналей основания.В основании лежит квадрат,так как пирамида правильная.Проведем ОМ перпендикулярно СД .Соединим Точку М и Н.Тогда по теореме о трёх перпедикулярах СД перпендикулярна МН и угол МНО-линейный угол двугранного угла при ребре СД.Угол МНО равен 30 градусов.Рассмотрим треугольник МОН-он прямоугольный ивысота лежит против угла 30.градусов,поэтому МН-гипотенуза будет в два раза больше катета МО и равна 8.По теореме Пифагора ОН равняется корень квадратный из 64минус 16 и равняется корень из 48=4 корня квадратных из 3.ОН=0,5АД.следовательно АД=8корней квадратных из3-сторона основания.Площадь боковой поверхности равна четыре площади треугольникаМДС и равна 0,5хМНхСДх4=0,5х8х8корень из3х4=128 корень квадратный из 3.
Стороны Δ АВС равны АС=5 м, ВС=12 м и АВ=13 м, СН - высота.
Для данных величин выполняется равенство:
13² = 5² + 12²
169 = 25 + 144 169 = 169 тогда по теореме, обратной теореме Пифагора, данный треугольник - прямоугольный. Большая сторона АВ - гопотенуза = 13, .
Тогда высота СН , проведенная из вершины прямого угла С, опущена на гипотенузу АВ и делит треугольник на два подобных треугольника, каждый из которых подобен Δ АВС.
Для данных величин выполняется равенство:
13² = 5² + 12²
169 = 25 + 144
169 = 169
тогда по теореме, обратной теореме Пифагора, данный треугольник - прямоугольный. Большая сторона АВ - гопотенуза = 13, .
Тогда высота СН , проведенная из вершины прямого угла С, опущена на гипотенузу АВ и делит треугольник на два подобных треугольника, каждый из которых подобен Δ АВС.
Рассмотрим подобие треугольников АСН и АВС:
СН/СВ = АС/АВ
СН/12 = 5/13
СН = 12*5/13
СН = 60/13
СН приблизительно = 4.6