Сечение, которое параллельно основанию пятиугольной пирамиды, делит высоту пирамиды в отношении 4 : 5, считая от вершины. Вычисли отношение площади сечения к площади основания пирамиды.
1) Точка М является точкой пересечения продолжения боковых сторон трапеции AB и CD. Образовавшиеся при этом треугольники ВМС и АDM подобны, т.к. ВС║АD - как основания трапеции, а площадь трапеции ABCD, которую необходимо найти, равна разности площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС
2) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Коэффициент подобия равен:
k = 3 : 5 = 0,6
Квадрат коэффициента подобия:
k = 0,6² = 0,36
3) Следовательно, площадь треугольника ВМС составляет 0,36 площади треугольника АDM и составляет:
SΔВМС = 50 · 0,36 = 18 см²
4) Находим площадь трапеции как разность площадей подобных треугольников:
Пусть внешний угол треугольника А = внешнему углу треугольника С и = 120°, тогда найдём внутренние углы треугольника. Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним. По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60° так же и внешний угол С - угол С треуг ABC= 180-120=60° А т.к. сумма углов треугольника = 180°, то 180-(60+60) = 180-120=60° - угол B А если все углы треугольника равны, то треугольник равносторонний. ЧТД )))
32 см².
Объяснение:
1) Точка М является точкой пересечения продолжения боковых сторон трапеции AB и CD. Образовавшиеся при этом треугольники ВМС и АDM подобны, т.к. ВС║АD - как основания трапеции, а площадь трапеции ABCD, которую необходимо найти, равна разности площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС
2) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Коэффициент подобия равен:
k = 3 : 5 = 0,6
Квадрат коэффициента подобия:
k = 0,6² = 0,36
3) Следовательно, площадь треугольника ВМС составляет 0,36 площади треугольника АDM и составляет:
SΔВМС = 50 · 0,36 = 18 см²
4) Находим площадь трапеции как разность площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС = 50 - 18 = 32 см².
ответ: 32 см².
Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60°
так же и внешний угол С - угол С треуг ABC= 180-120=60°
А т.к. сумма углов треугольника = 180°, то
180-(60+60) = 180-120=60° - угол B
А если все углы треугольника равны, то треугольник равносторонний. ЧТД )))