1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
Возьмем за икс первую сторону. Так как первая и вторая стороны одинаковы, то вторая сторона тоже икс. Третья получается х+5. Решим уравнение: х+х+х+5=56 3х=56-5 3х=51 х=51:3 х=17 - Первая сторона 17 - вторая сторона. 17+5=22-третья сторона.
Так как первая и вторая стороны одинаковы, то вторая сторона тоже икс. Третья получается х+5.
Решим уравнение:
х+х+х+5=56
3х=56-5
3х=51
х=51:3
х=17 - Первая сторона 17 - вторая сторона.
17+5=22-третья сторона.