Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
Четвертая сторона равна обоим диагоналям, AD = AC = BD.
Вот я примерно нарисовал этот 4-угольник.
Треугольник ABC равнобедренный с углами y (гамма).
Треугольник BCD равнобедренный с углами b (бета).
Треугольник ABD равнобедренный с углами a+y (a - альфа).
Треугольник ACD равнобедренный с углами a+b.
Получаем систему
{ a + (a + y) + (a + y) = 3a + 2y = 180 (ABD)
{ a + (a + b) + (a + b) = 3a + 2b = 180 (ACD)
{ (y + (a+b)) + b + b = a + y + 3b = 180 (BCD)
{ ((a+y) + b) + y + y = a + b + 3y = 180 (ABC)
Из 1 уравнения вычитаем 2 уравнение
2y - 2b = 0
b = y
Подставляем
{ 3a + 2b = 180
{ a + 4b = 180
Из 1 уравнения вычитаем 2 уравнение
2a - 2b = 0
a = b
То есть все три угла равны друг другу
a = b = y
3a + 2a = 5a = 180
a = b = y = 180/5 = 36 градусов.
Самый большой угол
y + (a+b) = 3a = 3*36 = 108 градусов.
Найти расстояние между прямыми L1 и L2
L1: 4x-3y-12=0.
L2: 4x-3y+20=0.
Решение.
Прямая L1 имеет свободный член C1=-12 и направляющий вектор
n1={-В1, А1}={3; 4}.
Прямая L2 имеет свободный член C2=20 и направляющий вектор
n2={-В2, А2}={3; 4}.
Так как нормальные векторы прямых L1 и L2 совпадают, то расстояние между ними можно вычислить формулой:
d = | C 1 − C 2 | / √(A ² + B²). (1)
Подставим значения A1, B1, C1, C2 в (1):
d = | − 12 − 20 | / (√ ( 4 ² +(-3) ²) = 35/5 = 6,4
Расстояние между прямыми равно d=6,4.