Из условия известно, что один угол параллелограмма в 2 раза больше другого. Для того, чтобы найти меньший угол параллелограмма мы должны вспомнить свойства углов параллелограмма и чему равна сумма углов четырехугольника.
Итак, у параллелограмма противоположные углы равны между собой.
Итак, одну пара углов обозначим с переменной x, тогда вторая пара углов равна 2x.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Из условия известно, что один угол параллелограмма в 2 раза больше другого. Для того, чтобы найти меньший угол параллелограмма мы должны вспомнить свойства углов параллелограмма и чему равна сумма углов четырехугольника.
Итак, у параллелограмма противоположные углы равны между собой.
Итак, одну пара углов обозначим с переменной x, тогда вторая пара углов равна 2x.
Сумма углов четырехугольника равна 360°.
x + x + 2x + 2x = 360;
6x = 360;
x = 360 : 6;
x = 60° меньший угол параллелограмма,
Тогда больший равен 60 * 2 = 120°.
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.