В данной трапеции ∠ADB = ∠CDB, так как диагональ BD является биссектрисой острого угла, ∠ADB = ∠CBD как накрест лежащие при пересечении AD║BC секущей BD, значит ∠CDB = ∠CBD, ⇒ BC = CD = 5 см.
Проведем высоту СН. В прямоугольнике АВСН АН = ВС = 5 см, СН = АВ = 4 см.
ΔCDH: ∠CHD = 90°, по теореме Пифагора HD = √(CD² - CH²) = √(25 - 16) = √9 = 3 см
AD = 5 + 3 = 8 см
При вращении трапеции вокруг основания ВС получается: 1) круг, с радиусом АВ = 4 см; 2) цилиндрическая поверхность с радиусом основания 4 см и образующей AD = 8 см; 3) коническая поверхность с радиусом основания 4 см и образующей CD = 5 cм.
∠ADB = ∠CDB, так как диагональ BD является биссектрисой острого угла,
∠ADB = ∠CBD как накрест лежащие при пересечении AD║BC секущей BD, значит ∠CDB = ∠CBD, ⇒ BC = CD = 5 см.
Проведем высоту СН. В прямоугольнике АВСН АН = ВС = 5 см, СН = АВ = 4 см.
ΔCDH: ∠CHD = 90°, по теореме Пифагора
HD = √(CD² - CH²) = √(25 - 16) = √9 = 3 см
AD = 5 + 3 = 8 см
При вращении трапеции вокруг основания ВС получается:
1) круг, с радиусом АВ = 4 см;
2) цилиндрическая поверхность с радиусом основания 4 см и образующей AD = 8 см;
3) коническая поверхность с радиусом основания 4 см и образующей CD = 5 cм.
S₁ = πR² = 16π см²
S₂ = 2πRH = 2π · 4 · 8 = 64π см²
S₃ = πRl = π · 4 · 5 = 20π см²
S = S₁ + S₂ + S₃ = 16π + 64π + 20π = 100π cм²
ответ: 1) 70*, 110*, 70*, 110*.
2) 50*, 130*, 50*, 130*.
3) 30*,150*, 30*, 150*.
Объяснение:
Сумма углов в четырехугольнике (а параллелограмм - четырехугольник) равно 360*.
Кроме того противоположные углы равны, а сумма углов, прилежащих к одной из сторон равна 180*.
Пусть угол А - острый, а угол В - тупой.
Значит
1) ∠В-∠А=40*. То есть ∠В больше ∠А на 40*.
Пусть ∠А=х, тогда ∠В=х+40. В сумме они равны 180*.
х+х+40=180*;
2х=140*;
х=70* - ∠А;
х+40*=70*+40*=110* - ∠В.
Так как противоположные углы в параллелограмме равны, то:
∠С=∠А=70*;
∠D=∠B=110*
Проверим:
70*+110*+70*+110*=140*+220*=360*. Все верно.
2) ∠В-∠А=80*. То есть угол В на 80* больше угла А.
∠А=х, ∠В=х+80*.
х+х+80*=180*
2х=100*;
х=50* - ∠А;
х+80*=50*+80*=130* - ∠В.
∠А=∠С=50*;
∠В=∠D=130*.
Проверим:
50*+130*+50*+130*=100*+260*=360*. Все верно.
3) ∠В-∠А=120*. Значит ∠В больше ∠А на 120*.
∠А=х, ∠В=х+120*.
х+х+120*=180*.
2х=60*;
х=30* - ∠А;
х+120*=30*+120*=150* - ∠В.
∠А=∠С=30*;
∠В=∠D=150*.
Проверим:
30*+150*+30*+150*=60*+300*=360*. Все верно.