Как я понимаю, нужно строить простенький график нахождения этой точки и провести отрезок, соединяющий эту точку с началом координат. Получится два равных треугольника, любой из которых мы можем рассматривать в решении. Итак, мы берем треугольник ABC(С - прямой угол), у которого катеты равны 3 и |-4|, и находим его гипотенузу по теореме Пифагора. Т.е. AB^2 = AC^2 + CB^2. Делая простые преобразования, получаем отрезок AB = 5. Если рассматривать его в декартовой плоскости, т.е. проведя дополнительную ось oz, получим координаты относительно центра. AB(0;0;5).
Объяснение:
12) Рассмотрим треугольник MNP.
MK - высота, MK = KN => Треугольник МNP - равнобед. (свойство высоты равнобедренного треугольника)
Угол М = угол N = 60 градусов (углы при основании)
Угол MPN = 180 - угол М - угол N = 180 - 60 - 60 = 60 градусов
Угол KPN = угол КРМ = 0,5 * 60 (угол MPN) = 30 градусов (КР - биссектриса, медиана, высота)
13) Рассмотрим треугольник SKP.
SK = KP => треугольник SKP - равнобед.
Угол SKP = Угол SKT * 2 = 25 * 2 = 50 градусов (KT - высота проведённая к основанию => KT - медиана, биссектриса)
Угол P = (180 - угол SKT):2 = (180 - 50):2 = 65 градусов
Угол P = угол S = 65 градусов (углы при основании)