Предположим, что таких сфер конечное количество. Выберем сферу с самым большим радиусом R. Пусть расстояние от центра сферы до плоскости окружности равно d. Тогда расстояние от центра этой сферы до любой из точек окружности равно R=√(r²+d²)
Восстановим перпендикуляр OH к плоскости окружности из ее центра O так, что OH=d1>d. Тогда расстояние от H до любой точки окружности равно R1=√(d1²+r²). Построим сферу с центром в H и радиусом R1. Из наших расчетов эта сфера будет проходить через исходную окружность. Осталось заметить, что R1=√(d1²+r²)>√(d²+r²)=R по построению, т.е. мы построили сферу, проходящую через данную окружность, с радиусом, большим R, несмотря на то, что по предположению это была сфера с самым большим радиусом, и при этом проходящая через данную окружность. Значит наше предположение неверно и таких сфер бесконечное количество.
Бесконечно много.
Объяснение:
Предположим, что таких сфер конечное количество. Выберем сферу с самым большим радиусом R. Пусть расстояние от центра сферы до плоскости окружности равно d. Тогда расстояние от центра этой сферы до любой из точек окружности равно R=√(r²+d²)
Восстановим перпендикуляр OH к плоскости окружности из ее центра O так, что OH=d1>d. Тогда расстояние от H до любой точки окружности равно R1=√(d1²+r²). Построим сферу с центром в H и радиусом R1. Из наших расчетов эта сфера будет проходить через исходную окружность. Осталось заметить, что R1=√(d1²+r²)>√(d²+r²)=R по построению, т.е. мы построили сферу, проходящую через данную окружность, с радиусом, большим R, несмотря на то, что по предположению это была сфера с самым большим радиусом, и при этом проходящая через данную окружность. Значит наше предположение неверно и таких сфер бесконечное количество.