Слепили из снега ком, больший обхват которого равен 180 см. Потом вырезали углубление в виде шарового сектора с центральным углом 120 градусов Найти объем оставшейся части снежного кома (π=3).
3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)
4. По гипотенузе и острому углу (ERF=ESF)
5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)
6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)
7. прости, не знаю
8. ...
9. По катету и стороне (не уверена) (ADE=BFM)
10. По двум катетам (ADB=CBD)
Объяснение:
в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.
в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
1. По катету и гипотенузе (PAD=DCB)
2. По двум катетам (MKT=NKT)
3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)
4. По гипотенузе и острому углу (ERF=ESF)
5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)
6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)
7. прости, не знаю
8. ...
9. По катету и стороне (не уверена) (ADE=BFM)
10. По двум катетам (ADB=CBD)
Объяснение:
в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.
в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС