1) Постройте равнобедренный треугольник по боковой стороне (пусть будет АВ=5 см) и углу при основании (пусть будет ≤А=30o). 1. рисуем луч АС 2. с транспортира откладываем угол А, равный 30o 3. с циркуля откладываем расстояние (остриё циркуля в точке А), равное 5см. На пересечении луча АВ и окружности получили точку В, 4. с циркуля откладываем такое же расстояние, (только острие циркуля в точке В). На пересечении луча АС и окружности получили точку С. 5. Соединяем точки В и С отрезком. АВС – искомый с боковыми сторонами АВ и ВС, равными 5см, и углом при основании А, равным 30o. Правильность построения проверяем транспортиром, измеряя С, он должен быть равен 30.
ABCDEF и A₁B₁C₁D₁E₁F₁ основании усеченной пирамиды , а O и O₁
R =AO=BO=CO=DO=EO =FO . R₁ =A₁O₁=B₁O₁=C₁O₁=D₁O₁=E₁O₁ =F₁O₁ . Рассмотрим четырехугольник (прямоугольная трапеция) AA₁O₁O и проведем A₁H ⊥ AO ( H ∈ AO) . AH =R - R₁ =12 см -8 см =4 см AH =AA₁/2 (катет против угла 30° : ∠AA₁H =90° -∠A₁AH =90° -60° =30°) ⇒ AA₁=2AH =8 см. AA₁B₁B равнобедренная трапеция известно AA₁=BB₁= A₁B₁ =8 см , AB =12 см . Высота A₁M этой трапеции и есть апофема. A₁M ⊥ AB ,.B₁N ⊥ AB , AM=BN =(AB -A₁B₁)/2 =(12 см -8 см)/2 =2 см. Из ΔAA₁M : h =A₁M =√(AA₁² - AM²) =√(8² -2²) =√(64 - 4) =√60 =2√15 (см).
1. рисуем луч АС
2. с транспортира откладываем угол А, равный 30o
3. с циркуля откладываем расстояние (остриё циркуля в точке А), равное 5см. На пересечении луча АВ и окружности получили точку В,
4. с циркуля откладываем такое же расстояние, (только острие циркуля в точке В). На пересечении луча АС и окружности получили точку С.
5. Соединяем точки В и С отрезком. АВС – искомый с боковыми сторонами АВ и ВС, равными 5см, и углом при основании А, равным 30o. Правильность построения проверяем транспортиром, измеряя С, он должен быть равен 30.
R =AO=BO=CO=DO=EO =FO .
R₁ =A₁O₁=B₁O₁=C₁O₁=D₁O₁=E₁O₁ =F₁O₁ .
Рассмотрим четырехугольник (прямоугольная трапеция) AA₁O₁O и
проведем A₁H ⊥ AO ( H ∈ AO) .
AH =R - R₁ =12 см -8 см =4 см
AH =AA₁/2 (катет против угла 30° : ∠AA₁H =90° -∠A₁AH =90° -60° =30°) ⇒ AA₁=2AH =8 см. AA₁B₁B равнобедренная трапеция известно AA₁=BB₁= A₁B₁ =8 см , AB =12 см . Высота A₁M этой трапеции и есть апофема.
A₁M ⊥ AB ,.B₁N ⊥ AB , AM=BN =(AB -A₁B₁)/2 =(12 см -8 см)/2 =2 см.
Из ΔAA₁M :
h =A₁M =√(AA₁² - AM²) =√(8² -2²) =√(64 - 4) =√60 =2√15 (см).