Внешняя точка - C, центр большой окружности - O пусть K - точка касания маленькой окружности и описанной в условии фигуры; ok ∩ mn = L проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B. OK ⊥ AB по св-у касательной OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno) таким образом ab || mn значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними)) большая окружность - вневписанная для Δabc => cn = cm = полупериметру пусть сторона abc = a тогда cm = 1.5a ca / cm = 2 / 3 mn по теореме косинусов из Δmon = 18√3 ab = 2 mn / 3 = 12√3 = a осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3 S = p * r = a²√3 / 4 r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6 Длина окружности с радиусом 6 = 2π * 6 = 12π ответ: 12π
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
пусть K - точка касания маленькой окружности и описанной в условии фигуры;
ok ∩ mn = L
проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B.
OK ⊥ AB по св-у касательной
OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno)
таким образом ab || mn
значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними))
большая окружность - вневписанная для Δabc
=> cn = cm = полупериметру
пусть сторона abc = a
тогда cm = 1.5a
ca / cm = 2 / 3
mn по теореме косинусов из Δmon = 18√3
ab = 2 mn / 3 = 12√3 = a
осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3
S = p * r = a²√3 / 4
r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6
Длина окружности с радиусом 6 = 2π * 6 = 12π
ответ: 12π
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см