Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Объяснение:
вот все правильно
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.